Minimax and minimax adaptive estimation in multiplicative regression: locally bayesian approach
نویسندگان
چکیده
منابع مشابه
Learning locally minimax optimal Bayesian networks
We consider the problem of learning Bayesian network models in a non-informative setting, where the only available information is a set of observational data, and no background knowledge is available. The problem can be divided into two different subtasks: learning the structure of the network (a set of independence relations), and learning the parameters of the model (that fix the probability ...
متن کاملAdaptive minimax regression estimation over sparse lq-hulls
Given a dictionary of Mn predictors, in a random design regression setting with n observations, we construct estimators that target the best performance among all the linear combinations of the predictors under a sparse `q-norm (0 ≤ q ≤ 1) constraint on the linear coefficients. Besides identifying the optimal rates of convergence, our universal aggregation strategies by model mixing achieve the...
متن کاملMinimax Optimal Procedures for Locally Private Estimation
Working under a model of privacy in which data remains private even from the statistician,we study the tradeoff between privacy guarantees and the risk of the resulting statistical estima-tors. We develop private versions of classical information-theoretic bounds, in particular thosedue to Le Cam, Fano, and Assouad. These inequalities allow for a precise characterization ofs...
متن کاملMinimax regression estimation for Poisson coprocess
For a Poisson point process X , Itô’s famous chaos expansion implies that every square integrable regression function r with covariate X can be decomposed as a sum of multiple stochastic integrals called chaos. In this paper, we consider the case where r can be decomposed as a sum of δ chaos. In the spirit of Cadre and Truquet (2015), we introduce a semiparametric estimate of r based on i.i.d. ...
متن کاملMinimax adaptive dimension reduction for regression
In this paper, we address the problem of regression estimation in the context of a p-dimensional predictor when p is large. We propose a general model in which the regression function is a composite function. Our model consists in a nonlinear extension of the usual sufficient dimension reduction setting. The strategy followed for estimating the regression function is based on the estimation of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Probability Theory and Related Fields
سال: 2011
ISSN: 0178-8051,1432-2064
DOI: 10.1007/s00440-011-0354-7